Digitale systemer
Forskningsleder Digitale system
- Bergen
anst@norceresearch.no
+47 402 23 815
Digitale systemer
Utnytter store datamengder
Forskergruppen har en tverrfaglig tilnærming til å utnytte data på en smartere måte, få ny innsikt og bidra til å løse samfunnsutfordringer gjennom digital teknologi.
Vi har kompetanse på dataprosessering, samvisualisering av komplekse datasett fra flere kilder, analyse av data, ansvarlig AI/KI, maskinlæring, interaksjonsdesign, brukervennlighet og utvikling av beslutningsstøtteverktøy.
Forskerne har hovedsakelig bakgrunn fra matematikk, fysikk og data- og informasjonsvitenskap.
Digitale system og datavitenskap
Digitalisering åpner mange kunnskapsdører og gir oss nye måter å forstå og jobbe med både gamle og nye problemstillinger. Her kreves det tverrfaglig tilnærming som sikrer hele verdikjeden i dataflyten, fra innsamling og kvalitetssikring helt frem til hvordan en skal dra nytteverdien av dataene og hvordan en interagerer med disse. Under følger en oversikt over viktige tema for vår forskningsgruppe.
Dataprosessering
Effektiv dataprosessering er spesielt viktig når ressurstilgangen er begrenset. En slik problemstilling viser seg for eksempel når en samler inn store mengder data i krevende omgivelser med begrenset tilgang på prosesserings- og nettverkskapasitet. God dataprosessering er også selve grunnsteinen når en ønsker videre analyse med for eksempel maskinlæring. Innsikt starter med gode data.
Visualisering
Visualisering av data påvirker hvilke data som fanger oppmerksomheten vår og hvilke beslutninger vi gjør. God visualisering kan gjøre vanskelige problemstillinger håndterbare, påvirke oss i riktig retning og lette hverdagen vår. Visualisering er derfor en viktig bestanddel i digitaliseringsprosesser. For prosjekt der en ønsker analyse av flere typer data på tvers av kompetanseområder har vi utviklet et avansert analyseverktøy, Enlighten, som letter arbeidet. Under ser du et eksempel fra prosjektet EPOS-N, European Plate Observing System Norge, som viser verktøyet i bruk.
Brukerdrevet design
Visualisering av data kan være et godt verktøy for beslutningsstøtte. Hvis visualiseringer skal brukes som et støtteredskap i arbeidskontekster, må man ta hensyn til informasjonsbehov, bakgrunner og mål for arbeidet som utgjør den enkeltes kontekst, i tillegg til hvilke data som er tilgjengelig for visualisering. En god måte å nå frem til nyttige visualiseringer er gjennom brukerdrevet design. Et eksempel på en brukerdrevet designprosess vi har jobbet med er visualiseringer av pasientdata for klinikere i nettbasert kognitiv atferdsterapi, for å identifisere pasienter som trenger oppfølging, og prioritere arbeidsinnsatsen mellom pasientene.
Kunstig intelligens og maskinlæring
Kunstig intelligens og maskinlæring gjør det lettere å hente ut ny kunnskap der klassisk analyse kommer til kort. Maskinlæring bidrar til å finne mønster og sammenhenger i store og komplekse datasett. Forskjellige datasett og anvendelsesområder krever forskjellige typer maskinlæringsalgoritmer, og det er viktig å kjenne til begrensninger som ligger til grunn og nøyaktighet av resultater. Vi er opptatt av tverrfaglige tilnærminger og nært samarbeid med brukere for å sikre best mulig resultater og nytteverdi. Ansvarlig kunstig intelligens er spesielt viktig når en jobber med personer og persondata, og implikasjonene av valg en gjør i utviklingen av algoritmen må evalueres fra forskjellige perspektiver. Å kunne forklare hvorfor maskinlæringsalgoritmen kommer frem til resultatene gir større tillit til prosessen og kan minske brukerterskelen – såkalt forklarbar KI (XAI). Vi jobber inn mot forskjellige markeder, der prosjektporteføljen inkluderer for eksempel prosjekter inn mot transport, olje og gass, akvakultur, helse og fornybar energi.
Et eksempel på bruk av maskinlæring inn mot akvakultur er et prosjekt vi har utført for en kunde for telling av lakselus i merd. Her har vi brukt såkalte dyplæringsmodeller, der en bruker flere lag med nevrale nettverk for å lokalisere laks og detektere og telle lakselus ved hjelp av videoovervåking. God kontroll på forekomsten av lakselus er viktig for å vurdere hvilke tiltak en skal sette inn når.
Dyplæringsmodeller er også brukt i analyser av signaltidsserier, for eksempel prognoser. En vanlig brukt modell er recurrent neural network (RNN). I et av våre prosjekter har vi utviklet en koder-dekoderarkitektur basert på RNN i vindhastighetsprognoser, som viser lovende resultater for korttidsprediksjon. Dette kan for eksempel bedre lønnsomheten til vindparker hvis en kombinerer nøyaktige vindprognoser med avanserte kontrollsystemer.
Dataanalyse og beslutningsstøtteverktøy
Programvare utarbeidet i tett samarbeid med bruker kan gi lettere tilgang på de analysene en trenger og med en informasjonsflyt som passer best inn i arbeidssituasjonen. Vi har lang erfaring med utvikling av avanserte analyse- og beslutningsstøtteverktøy, som for eksempel SARA og LSSS.
SARA har vært i operativ tjeneste siden år 2000 og brukes av Hovedredningssentralen, Radio Medico og Kystradioen til å koordinere redningsaksjoner. Hovedoppgaven til verktøyet er å samordne og presentere all relevant informasjon om reelle og potensielle nødsituasjoner, med god kommunikasjonsflyt mellom partene. SARA står for Search And Rescue Application.
LSSS har vært i bruk siden 2007 og bygger på et langt og konstruktivt samarbeid med Havforskningsinstituttet. Programvaren er spesielt nyttig for forskere og brukes for å tolke akustiske data fra havområder. Disse dataene blir så brukt for å estimere størrelsen på fiskebestander som er en svært viktig faktor i bestemmelsen av fangstkvoter. LSSS står for Large Scale Survey System.
Møt forskerteamet
Seniorforsker
- Bergen
elno@norceresearch.no
+47 909 63 459
Seniorforsker
- Bergen
grfo@norceresearch.no
+47 56 10 78 21
Forsker
- Bergen
hasv@norceresearch.no
+47 56 10 70 50
Seniorforsker
- Bergen
inel@norceresearch.no
+47 975 73 078
Seniorforsker
- Bergen
jeco@norceresearch.no
+47 908 75 828
Seniorforsker
- Bergen
jowa@norceresearch.no
+47 56 10 72 93
Seniorforsker
- Bergen
juyo@norceresearch.no
+47 988 47 934
Sjefsforsker
- Bergen
kljo@norceresearch.no
+47 56 10 78 03
+47 974 650 33
Sjefsforsker
- Bergen
xtai@norceresearch.no
+47 56 10 78 30
Seniorforsker
- Bergen
ynhe@norceresearch.no
+47 917 97 224
Seniorforsker
- Bergen
tola@norceresearch.no
+47 901 42 945