

Optimization of Shallow Geothermal Energy Resources for Green Transition OptiSGE

Simulation Tools

Karoline Kvalsvik MSc.

Nygårdsgaten 112 NTNU and Norce

Single borehole

• Grouted

Groundwaterfilled

Several boreholes

- Scaling up from single boreholes
- Simplifying boreholes
- Interacting/not interacting

$$R_{b} = \frac{1}{4\pi\lambda_{g}} \left[\beta + \ln\left(\frac{\theta_{2}}{2\theta_{1}(1-\theta_{1}^{4})^{\sigma}}\right) \right]$$
(12)
$$R_{b} = \frac{1}{4\pi\lambda_{g}} \left[\beta + \ln\left(\frac{\theta_{2}}{2\theta_{1}(1-\theta_{1}^{4})^{\sigma}}\right) - \frac{\theta_{3}^{2}\left(1-\frac{4\sigma\theta_{1}^{4}}{1-\theta_{1}^{4}}\right)^{2}}{\frac{1+\beta}{1-\beta} + \theta_{3}^{2}\left(1+\frac{16\sigma\theta_{1}^{4}}{(1-\theta_{1}^{4})^{2}}\right)} \right]$$
(13)

$$R_{b} = \frac{1}{4\pi\lambda_{g}} \left[\beta + \ln\left(\frac{\theta_{2}}{2\theta_{1}(1-\theta_{1}^{4})^{\sigma}}\right) \right]$$
(12)
$$R_{b} = \frac{1}{4\pi\lambda_{g}} \left[\beta + \ln\left(\frac{\theta_{2}}{2\theta_{1}(1-\theta_{1}^{4})^{\sigma}}\right) - \frac{\theta_{3}^{2}\left(1-\frac{4\sigma\theta_{1}^{4}}{1-\theta_{1}^{4}}\right)^{2}}{\frac{1+\beta}{1-\beta} + \theta_{3}^{2}\left(1+\frac{16\sigma\theta_{1}^{4}}{(1-\theta_{1}^{4})^{2}}\right)} \right]$$
(13)

where θ_1 , θ_2 , θ_3 , σ and β are all dimensionless parameters. They are defined as:

$$\begin{aligned} \theta_1 &= \frac{s}{2r_b}, \quad \theta_2 &= \frac{r_b}{r_{po}}, \quad \theta_3 &= \frac{r_{po}}{s} = \frac{1}{2\theta_1\theta_2}, \quad \sigma &= \frac{\lambda_g - \lambda}{\lambda_g + \lambda}, \\ \beta &= 2\pi\lambda_g R_p \end{aligned}$$
(14)

 $\frac{R_{1-l'}}{R_{1-l'}}$ R_b

Figures and formulae from Javed and Spitler, 2017

$$\frac{-bR_{2-b}}{bR_{2-b}}$$

Fig. 2. Notations and dimensions defining pipe size and spacing for a borehole with a single U-tube.

Single borehole

From: S

 $Nu_{ann} = 0.1$

Groundwaterfilled

 $Nu_{po} = 0.30$

pitler et al., 2016	
$4(Ra_{ann}^{*})^{0.25}$ $4.0E7 > Ra_{ann}^{*} > 1.3E6$	(26)
$(Ra_{po}^*)^{0.25}$ 4.1E7 > Ra_{po}^* > 1.8E6	(27)
$20(Ra_{BHW}^*)^{0.25}$ 2.9E7 > Ra_{BHW}^* > 5.4E5	(28)
$Rq_{po}^{\prime\prime}D_{H}^{4}$ $V_{ann}\alpha_{ann}$	(20)
$\int_{0}^{4} D_{H}^{4}$ $_{W} \alpha_{W}$	(21)
$\frac{q_{BHW}^{\prime}D_{H}^{4}}{w v_{w} \alpha_{w}}$	(22)

Several boreholes

Scaling up from single boreholes

$$w = \frac{A_{total,no\ intersect} - A_{intersect}}{A_{total,no\ intersect}},$$

From: Harsem et al., 2024

g-function and transfer functions

$$T_b = T_g - \frac{q'}{2\pi k} g\left(\frac{t}{t_s}, \frac{r_b}{H}, \frac{B}{H}\right)$$

Several boreholes

• Scaling up from single boreholes

Figure 1. Model description with nodal mesh and heat transfer parameters

From Gustrafsson and Westerlund 2010.

Several boreholes

Simplifying boreholes

From: Park et al., 2018: Hellström's Duct Storage Model (DST model).

Several boreholes

- Simplifying boreholes
- Interacting/not interacting

From: Equa Simulation AB, 2023.

g-function and transfer functions

Tools

Not complete list

- DST model TRNSYS
- g-function python (pygfunction) and TRNSYS
- Superposition borehole model TRNSYS and Modelica
- MoBTES Modelica \bullet
- IDA ICE
- FEFLOW
- Fluent

COMSOL

Fig. 9a. Velocity magnitude plot (m/s) at the vertical level 1.5 m.

From: Gustafsson et al., 2010

In Fig. 10a, temperature differences (ΔT) in the borehole water are shown for different simulations over a line crossing the borehole between the two U-pipe legs in the middle of the borehole length. The temperature difference is calculated as the difference to the water temperature next to the borehole wall. It may be seen that M_u2 with slightly higher heat transfer rate result in an increased temperature difference. Fig. 10b shows the vertical velocities over the same line. All of these simulations have a heat transfer rate of approximately 50 W/m. Due to the non-linearity of the density-temperature curve the lower mean temperature level of the water in M_u2 will result in smaller density differences $(\Delta \rho)$, Table 2. Thus, M_u2 has lowest velocities of these three simulations and result in larger borehole thermal resistance.

Comparison of some famous models

	SBM	g-function	DST	HRSM	MoBTES	IDA ICE
Principle(s)	TRM, g- functions for neighbourghs	Numerical FDM - store solution	TRM, Cylinder volume with sources (superposition)	TRCM,	TRCM,	TRCM, superposition of contributions
Layers	No	No	Yes (not earlier)	No	Yes	Two: top+ground
Positions	Arbitary	Arbitary	Evenly spaced (can overcome)	Arbitary	Various configurations	Arbitary
Heat injection	FDM, step- pulse for heat, uniform T, parallel/serial	FDM, step- pulse for heat, uniform T, parallel only	FDM or step- pulse,	FDM, parallel only, uniform T, step-pulse	FDM, Parallel/serial	FDM, only parallel?
Inventer(s) and year	Eskilsson 1986	Eskilsson 1987	Hellström, 1991	Picard and Helsen, 2014	Formhals et al., 2020	Equa, 2018'

Sources

- Equa Simulation AB, 2023: Boreholes. URL: https://www.equa.se/en/ida-ice/extensions/borehole. Assessed: 03.06.2024.
- Energy Storage. The Richard Stockton College of New Jersey, New Jersey, USA, May 31-June 2
- Applied Thermal Energy 30: 683-691.
- Energy 35, 1061-1070.
- Results Have Limited Impact on Total Seasonal Performance Factor. Proceedings of IGSHPA 2024, Montréal, Canada.
- article, to be submitted.
- 861, https://www.sciencedirect.com/science/article/pii/S0360544217317978.
- 164, 352-365.

Chiasson, A. D. and R. Elhashmi. 2017. Alternate Approach to the Calculation of Thermal Response Factors for Vertical Borehole Ground Heat Exchanger Arrays Using an Incomplete Bessel Function. Proceedings of IGSHPA Technical/Research Conference and Expo Denver March 14-16, 2017.

Gustafsson, A.M., and S. Gehlin. 2006. Thermal response test-power injection dependence. Ecostock 2006, 10th International Conference on Thermal

Gustafsson, A.-M., L. Westerlund and G. Hellström. 2010. CFD-modelling of natural convection in a groundwater-filled borehole heat exchanger.

Gustafsson, A.-M. and L. Westerlund. 2010. Multi-injection rate thermal response test in groundwater filled borehole heat exchanger. Renewable

Harsem, T. T., J. Kocbach, K. H. Kvalsvik. 2024. Comparison of BTES Modelling Approaches in an Energy System Model: Inaccuracies in BTES Model

Kvalsvik, K. H., Ramsad, R. K., Holmberg, H. and Kocbach, J. (n.d.): Value of heat barrier around borehole thermal energy storages. Unpublished

Park, S.-H., Y.-S. Jang and E.-J. Kim, 2018. Using duct storage (DST) model for irregular arrangements of borehole heat exchangers. Energy, 142,851-

• Spitler, J. D., S. Javed and R. K. Ramstad. 2016. "Natural convection in groundwater-filled boreholes used as ground heat exchangers." Applied Energy

Thank you!

Contact: kakv@norceresearch.no