

Optimization of Shallow Geothermal Energy Resources for Green Transition OptiSGE

DTS Examples

Karoline Kvalsvik MSc.

Nygårdsgaten 112 NTNU and Norce

How

- An optical fibrecable is installed in the borehole(s) •
- The ends of the fibres are coupled to a measurement instrument and logger •
- The measurement instrument sends laser pulses through the fibre and registers the backscattered light •
- Light is converted to temperature by a formula with 3 parameters •
- Calibration consists in adjusting offset/parameters •

- Avoid bending sharply/breaking the fibres
- Avoid end at the end End signal is bad

Spliced ends – requires practiced hands

Plastic cable with glass fibre:

Measurement setup:

• How high resolution do you need?

- Length: long enough, bit no longer! Time for loading data!
- Longer averageing times lower errors

Fjell school 100 holes Fibers in 11 Arranged in circles ≈50°C in the middle

Site II: Drammen

Technical

room

Taped end of fiber

10 m taped to the collectors

Fiber and collectoras are lowered into the hole

Technical room

Coils should be long enough to contain the whole laser pulse. V=200 000 km/s=2*10^8m/s dt=20 ns =2*10^-8 s x=4 m

Coils should be long enough to contain the whole laser pulse. V=200 000 km/s=2*10^8m/s dt=20 ns =2*10^-8 s x=4 m

Measured mid-temperatures

Site III: Vensmoen

Results from Vensmoen – broken fibre in one well

- Canada.
- Groundwater, (50), no. 5, pages 726–735

• Kvalsvik, K.H., Ramstad, R. K., Holmberg, H. and Kocbach, J. M (2024). "Quantification of losses from borehole thermal energy storage through distributed temperature sensing and numerical modelling". Proceedings of IGSHPA2024, Montréal,

• A. T. Leaf, D. J. Hart, and J. M. Bahr (2012): Active thermal tracer tests for improved hydrostratigraphic characterization.

Thank you!

Contact: kakv@norceresearch.no