Experience with Design, Commissioning and Operation of Sustainable Ground-Source Heat Pumps for Heating and Cooling

Dr.ing. Jørn Stene Specialist heat pump and cooling system **COWI AS** – Norway

Sustainable GHSP Plants

- Minimum resource/material use
 - High-quality components and unit long lifetime
- Environmentally friendly fluids
 - Refrigerants anti-freeze fluids PCM etc.
 - Biodegradable excellent thermophysical properties
- Energy-efficient operation
 - Energy-efficient components, units and systems
 - Minimum electricity use (kg CO₂/kWh) during operation
 - Regular maintenance
 - Long lifetime maintained energy efficiency

Sustainability – Total Quality from Design to Operation

Calculation of Heating and Cooling Demands

- Space heating
- · Heating of ventilation air (after heat recovery unit)
- DHW heating
- Space cooling and process cooling
- Power duration diagram (load visualisation) →
- Essential for correct design of:
 - Heat pump system
 - Borehole system (BTES)
 - Distribution systems for heating & cooling

Design of the Borehole System (BTES)

- Annual thermal energy balance
 - Heating/cooling loads for heat pump system (kW, kWh/year)
 - Ground properties (NGU or TRT)
 - · Possibly thermal charging (space limitations, ground-conditions etc.)
- Computer tools for design e.g. EED or IDA ICE
 - Total borehole depth
 - Borehole geometry
- Ground-source system components/fluid
 - Borehole heat exchanger (BHE) system
 - High-quality anti-freeze fluid
 - Pumps, heat exchangers, valves, deaerator etc.

Design of Heat Pump Plant and Secondary Systems A

- Heat pump units
 - Natural working fluid (propane, ammonia, CO₂)
 - High quality components ErP min. A+ or Eurovent min. A
 - · Risk assessment and safety systems for propane/ammonia
- Optimized system design and operation for minimum energy use
 - Maximize SCOP, minimize peak load and minimize parasitic losses
- Secondary systems SCOP vs. temperature level
 - Heating rel. low distribution temperature
 - Outdoor temp. compensated supply temperature
 - Retrofit measures to reduce supply temperature in existing buildings
 - Cooling rel. high distribution temperature

Example – GSHP System for Heating, DHW & Cooling

New Stavanger University Hospital

- Stage 1 120,000 m²
- To be completed 2024
- World class GSHP system
 - 130 boreholes x 250 m
 - Ammonia (R717) heat pumps
 - High-efficiency units (VSD)
 - CO₂ heat pumps DHW
 - Optimized for DHW heating
- Peak load bio-gas boilers

Sustainability – Real Quality vs. Designed Quality

- Design-build contract technical description with quality req. + system diagram
- Assessment of tenders equipment, system design, performance, price offer (LCC)
- Detailed design installation period
 - Continuous quality control (QC)
- Commissioning
 - · Extensive functional testing components, sub-systems and total system
 - Performance testing SAT (Site Acceptance Test)
- Trial operating period (min. 12 months) with plant tuning \rightarrow hand-over
- Plant monitoring → optimized operation regular maintenance

Thank you for your attention!

