

A Digital Toolbox for Modeling and Optimization of Geothermal Energy Systems

Odd Andersen, Øystein Klemetsdal

CGER Matchmaking Event, Jan. 26, 2023

Introduction

- Innovation Project with SINTEF Digital and Ruden AS (2020-2023)
- Main objective: develop a *Digital Platform* to optimize design and management of complex geothermal systems for production and seasonal storage of heat.

MATLAB Reservoir Simulation Toolbox (MRST)

Transforming research on reservoir modelling

Unique prototyping platform:

- Standard data formats
- Data structures/library routines
- Fully unstructured grids
- Rapid prototyping:
 - Differentiation operators
 - Automatic differentiation
 - Object-oriented framework
 - State functions
- Industry-standard simulation

% Three-phase template model fluid = initSimpleADIFluid('mu', [1, 5, 0]*centi*pg 'rho', [1000, 700, 0]*kilogram/meter^3pg'n' % Constant oil compressibility % Construct reservoir model model = TwoPhaseOilWaterModel(G %% Define initial state

%% Define initial state
region = getInitializationle
 'datum_depth', definitializationle

state0 = initStateBlackOi

% Define schedule

schedule = simpleSchedule(timesteps, 'W'

www.mrst.no

MATLAB Reservoir Simulation Toolbox (MRST)

Transforming research on reservoir modelling

Large international user base:

- downloads from the whole world
- 124 master theses
- 56 PhD theses
- 400 journal papers (not by us)
- 144 proceedings papers

Numbers are from Google Scholar notifications

Used both by academia and industry

Google Analytics: access pattern for www.mrst.no Period: 1 July 2018 to 31 December 2019 Unique downloads: 5 516 (103 countries and 838 cities)

Modules for optimization and geothermal simulation

Geothermal simulation module

- 1ph fluid flow in porous/fractured medium
- Energy conservation (temperature or enthalpy formulation)
- Complex, unstructured grids
- Temperature/pressure dependent rock properties
- Well group controls
- Multisegment wells

Nonlinear optimization module

- Adjoint-based nonlinear optimization
- Calibrate model parameters
- Compute optimal operational parameters (e.g. maximising profits)
- Ensemble optimization

Digital Platform modular concept

- The geological reservoir is only one component in a larger system that includes:
 - wells and well groups
 - water pumps and heaters
 - heat pumps and heat exchangers
 - (time-dependent) heat sources and consumers
 - system losses
- Optimal use requires taking the whole system into account, while considering:
 - supply and demand
 - energy prices

The importance of fracture and well modeling

The importance of fracture and well modeling

Discrete fracture model

3 fractures

3 fractures

15 fractures

15 fractures

The importance of fracture and well modeling

Short inter-well distance, low pressure differences, significant buoyancy effects \rightarrow unresolved wellbore flow leads to nonphysical flow pattern

Solution: full wellbore model with conservation of mass/energy

Example: Kvitebjørn (Tromsø)

Model construction: Conforming 2D Voronoi grid extruded vertically

Example: Kvitebjørn (Tromsø)

Simulation results: Matrix temperature after 6 months of charging

- Setup: heat storage in 60 \times 60 \times 20 m box, homogeneous perm/poro of 2 md/0.04
- Charge for specific time, then discharge to provide peak load to external application
- Objective: find injection rate/temperature that minimizes associated energy costs

Optimal control - simple storage scenario

Parameter	Value
Charge period (days)	15
Discharge period (days)	4
Energy price (NOK/kWh) 5	0.75 - 1.5 - 3.0
Charge: max power from source (MW)	1
Discharge: power delivery required (MW)	8
Initial reservoir temperature, <i>T</i> o (°C)	10

Four strategies: no heat storage, base case storage, optimized storage with constant and varying temperature/rate

Optimal control results

Optimal control results

Calibration to data - model tuning

Coarse network model

- Use gradient-based optimization with manifold temperature mismatch as objective
 - $\begin{array}{lll} & & \mbox{Recast} \mbox{ as nonlinear least-squares problem} \\ & \rightarrow \mbox{ use Levenberg Marquardt algorithm} \end{array}$
- Tune *coarse-grid network model* with manifolds only instead of full model w/ 97 wells
- Parameters tuned: pore volumes, flow/thermal transmissibilities, heat capacities

Calibration to data - model tuning

Calibration to data - model tuning

Conclusions

- Integrated framework for modelling and optimization of geothermal heat storage
 - Based on methods from simulation of oil and gas reservoirs
 - Fracture mass and heat flow (DFM), accurate wellbore modelling
 - Gradient-based optimization capable of optimal control and parameter tuning
 - System simulated as a set of connected loops: "plug and play" with reservoirs, pumps, heaters, ...
- Simplified parameter study highlights important modelling aspects
 - Explicit fracture modelling is important when the rock is sparsely fractured
 - Densely fractured plants may be adequately modelled using upscaled rock parameters
 - Modelling mass/heat flow inside wellbore has significant effect on simulated performace

The authors would like to thank Ruden AS, Wessel Energy AS, and Kvitebjørn Varme AS for allowing the publication of this work

Technology for a better society